
AN ANALYTICAL MODEL FOR NEAR-FAULT GROUND MOTIONS 
AND THE RESPONSE OF SDOF SYSTEMS 

 
 

Charles Menun1 and Qiang Fu2 

 
 

ABSTRACT 
 

An analytical model for fault-normal near-fault ground motions, which can be 
used in lieu of recorded ground motions, is described. The ground motion model 
is defined by five parameters that, for a recorded near-fault ground motion, can be 
determined by a nonlinear regression analysis.  
 
Time-history results for linear and nonlinear single-degree-of-freedom systems 
are used to demonstrate the ability and limitations of the proposed model to 
predict the severity of the structural response caused by near-fault ground 
motions. For ductility ratios commonly encountered in practice, the proposed 
ground motion model predicts displacement demands that, on average, are within 
10% of those caused by the recorded ground motions for systems that have an 
initial period, T , that lies in the range 0 , where T  is the period 
of the velocity pulse present in the record. For systems that have periods that lie 
outside of this range, the proposed ground motion model tends to underestimate 
the displacement demands because it cannot replicate the frequency content of the 
recorded ground motions beyond that associated with the velocity pulse.  
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Introduction 
 

The manner in which a structure sustains damage during an earthquake is strongly 
influenced by its proximity to the rupturing fault. For structures located within 15 km of the 
fault, the damage is often incurred during one or two cycles of severe inelastic deformations that 
coincide with a large amplitude velocity pulse in the fault-normal component of the ground 
motion. In light of this observation, an analytical model for the velocity pulse, which can be used 
in lieu of recorded ground motions, is proposed. Similar near-fault ground motion models have 
been suggested by other researchers. In particular, Alavi and Krawinkler (2000) consider three 
piecewise-linear equivalent velocity pulses and investigate their suitability for seismic 
performance assessments. Likewise, Makris and Chang (2000) describe several families of 
cycloidal pulses that can be used to represent near-fault ground displacements and examine the 
transient behavior of single-degree-of-freedom oscillators with viscous and friction damping 
when they are subjected to these idealized ground motions. The ground motion model described 
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in this paper serves as an alternative to these existing models. As we will see, the proposed 
model is defined by five parameters that, for a specified near-fault record, are determined by a 
nonlinear regression analysis.  

 
We note that a time-history analysis conducted with the proposed ground motion model 

will not capture all the details of the structural response. However, this is not the objective of 
such analyses.  The intent of time-history analyses using the proposed model is to predict the 
extreme values of those responses that correlate well with the seismic performance of a structure. 
In this paper, we present time-history results for linear and nonlinear single-degree-of-freedom 
(SDOF) systems that demonstrate the ability and limitations of the proposed model to predict the 
severity of the structural response caused by near-fault ground motions. 

 
Near-fault Ground Motion Model 

 
Consider a near-fault ground motion model in which the fault-normal component of the 

ground velocity is idealized as  
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where  is the vector of parameters that define the model. In particular, 
 and T  characterize the amplitude and period of the velocity pulse, respectively, t  defines 

the time at which the pulse starts and n  and  are shape parameters. Typical fault-normal 
ground velocities generated by this model are plotted in Fig. 1, which demonstrates the variety of 
pulse types that can be obtained by varying the shape parameters  and . Also, note the 
secondary role played by parameter t , which only serves to locate the pulse along the time axis. 
However, we will see shortly that t  plays an important role when fitting the model defined by 
Eq. 1 to a recorded near-fault ground motion. 
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Figure 1. Typical fault-normal velocity pulses generated by proposed model defined by Eq. 1.  



The parameter values θ  that define the ground velocity model u  that best fits a recorded 
fault-normal near-fault ground velocity u  can be determined by a nonlinear regression; in 
particular, θ  is that realization of θ that minimizes the sum of squares 
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where ,  are the times at which  has been recorded. Newton’s method is 
commonly employed to determine θ  (Seber and Wild, 1989). Unfortunately, for the case at 
hand, the solution obtained by Newton’s method is strongly dependent upon the initial values 
assigned to the parameters t  and T , i.e., the assumed location and duration of the pulse. When 
poorly chosen initial values of t  and T  are used, Newton’s method often converges to a local 
minimum of , rather than the desired global minimum. To circumvent this problem in an 
efficient manner, the minimization of (2) is carried out in two steps. First, an approximate 
solution is determined by means of a genetic algorithm (Coley, 1999), which is a form of 
importance sampling that randomly searches the parameter space for candidate solutions and 
then refines and concentrates its search around those solutions that result in the smallest values 
of . The genetic algorithm is terminated when it is unable to improve the solution after a 
prescribed number of iterations. The approximate solution found by the genetic algorithm is then 
used as the initial value for Newton’s method, which is used to refine the solution. We note 
however that there is no guarantee that the above approach will locate the global minimum. This 
is a well-known shortcoming of all nonlinear minimization routines. To address this problem, the 
genetic algorithm is restarted several times to obtain a number of approximate solutions. Each of 
these solutions is then used as the starting point for Newton’s method. Our experience with this 
approach has revealed that when the genetic algorithm is restarted five times, usually four or five 
of the solutions lead to the same global minimum of  after applying Newton’s method. 
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Recorded and Fitted Ground Motions 
 

Using the procedure described in the previous section, the ground velocity model defined 
by Eq. 1 is fit to an ensemble of ten recorded fault-normal near-fault ground velocities originally 
compiled by Somerville et al. (1997) for Phase II of the SAC3 Joint Venture Steel Project. The 
ground motions and the fitted model parameters are summarized in Table 1. Also listed in this 
table is the peak ground velocity, u , and predominant period, T  (defined as the period at 
which the pseudo-velocity response spectrum assumes its maximum value), of each recorded 
ground motion.  

maxg� Sv

 
As illustrated in Figs. 2 and 3, the model parameters V  and T  appear to be related to 

 and T , respectively. Alavi and Krawinkler (2000) noted similar relationships for the 
amplitude and period parameters in their equivalent pulses. Based on the roles played by V  and 

 in Eq. 1, the relationships seen in Figs. 2 and 3 are sensible and give us reason to believe that 
robust attenuation relationships can be developed for V  and T . These relationships may be in 
terms of the expected values of u  and T  at a building site or possibly in terms of more 
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Table 1. Recorded ground motions and fitted ground motion model parameters. 

Ground Motion 
 

wM  
 

R  
km 

maxgu�
cm/s 

SvT  
(s) 

pV  
cm/s 

pT  
(s) 

1n  
 

2n  
 

0t  
(s) 

  1. Tabas, Iran (1978) 7.4 1.2 128 4.50 98 5.26 0.16 0.14 8.34
  2. Loma Prieta, Los Gatos (1989) 6.9 3.5 173 3.25 126 3.17 0.29 0.33 5.89
  3. Loma Prieta, Lex. Dam (1989) 6.9 6.3 179 1.07 191 2.55 0.94 10.47 2.43
  4. Cape Mendocino (1992) 7.1 8.5 149 0.74 160 1.75 0.75 11.78 1.96
  5. Erzincan, Turkey (1992) 6.7 2.0 119 2.30 114 2.41 2.59 0.77 0.95
  6. Landers (1992) 7.3 1.1 132 4.41 122 8.23 1.03 0.43 3.58
  7. Northridge, Rinaldi (1994) 6.7 7.1 174 1.05 197 1.18 4.68 1.88 1.47
  8. Northridge, Sylmar (1994) 6.7 6.4 122 2.40 108 2.72 8.88 0.44 1.59
  9. Kobe, JKMA (1995) 6.9 0.6 160 0.88 93 0.90 0.22 -0.66 7.12
10. Kobe, Takatori (1995) 6.9 4.3 174 1.27 156 2.05 0.67 0.61 3.45

( ) ) ( ( ) 

 
fundamental measures of the site’s seismic environment such as the magnitude, , and 
distance, 

wM
R , of the anticipated earthquake.   

 
The recorded ground velocities and fitted models for representative ground motions listed 

in Table 1 are plotted in Figs. 4, 5, 6 and 7. Also shown in these figures are the corresponding 
displacements and accelerations obtained by integrating and differentiating the velocity records, 
respectively. It is evident from Figs. 4 through 7 that the proposed ground motion model can 
replicate the velocity pulse present in these records; however, the model appears to be unable to 
properly represent the frequency content of the ground motions beyond that associated with the 
velocity pulse. The implications of these observations are investigated below by subjecting 
SDOF systems to each of the recorded ground motions and corresponding fitted ground motion 
models listed in Table 1 and comparing the responses.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Ground motion model amplitude, V , 
vs. peak ground acceleration of 
recorded ground motion, . 
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Figure 3. Ground motion pulse period, T , 
vs. predominant period of recorded 
ground motion, T . 
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Figure 7. Model fitted to record 7 in Table 1. Figure 6. Model fitted to record 5 in Table 1.
 
 

 
SDOF Response to Recorded and Fitted Ground Motions 

 
To assess the suitability of the proposed ground motion model for structural analyses, we 

consider the response of the SDOF system shown in Fig. 8. The oscillator has initial stiffness k , 
yield strength , post-yield stiffness � , damping ratio  and mass . In the following 
analyses, we set �  and 

0

yf 0k
10.

� m
03.0� 0�� . The ductility ratio of the system is defined as 

y��� max� , where �  is the maximum absolute displacement of the oscillator when it is 
excited by a ground motion and 

max

0kf yy ��  is the displacement at which the oscillator first 
yields. For a linear system, .   1��
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 Figure 8. Nonlinear SDOF system considered in analyses.  
 
Constant Ductility Response Spectra 
 

For an oscillator that has initial natural period 02 km��

dt

),�T ,(Tym

T , let �  denote the 
required yield displacement of the system such that the ductility ratio is  when the oscillator is 
subjected to recorded ground motion u . Similarly, let �  denote the 
required yield displacement when the oscillator is subjected to the corresponding model of the 
ground motion, . A plot of �  or �  as a function of 
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a prescribed value of  is known as a constant ductility response spectrum. Note that, because 

, the constant ductility response spectrum can be used to summarize the displacement 
demands imposed on a nonlinear SDOF system by a ground motion for a range of periods.  
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For each recorded and fitted ground motion listed in Table 1, �  and �  

are computed for  and , where T  is the fitted pulse period listed in 
Table 1 for that ground motion. The sample mean and mean-plus-or-minus-one-standard-
deviation constant ductility response spectra computed for the ensemble of recorded ground 
motions and for the ensemble of fitted ground motions are plotted in Fig. 9. It is evident in this 
figure that the constant ductility response spectra computed for the model ground motions are 
comparable to those computed for the recorded ground motions for periods near T . 
However, as T  is decreased or increased away from unity, the agreement between the 
response spectra of the two ensembles weakens. In fact, for T , the difference between 
the mean response spectra is approximately one standard deviation for all ductility ratios; clearly, 
the proposed model does not perform well in this period range. In contrast, for T , the 
difference between the mean response spectra is a fraction of the record-to-record (aleatory) 
variability present in the ensembles. However, the proposed ground motion model appears to 
predict displacement demands that, on average, are smaller than those caused by the recorded 
ground motions. We can attribute this shortcoming of the proposed ground motion model to the 
fact that the model only attempts to replicate the velocity pulse. Consequently, only those 
frequencies near that of the velocity pulse, i.e., near , are properly represented by the 
fitted ground motions. 
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Figure 9. Mean and mean-plus-or-minus-one-standard-deviation constant-ductility response 
spectra for 1 . Recorded ground motions in gray, fitted ground motions in black.
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Response Ratio 
 
To further assess the accuracy of the proposed ground motion model, it is useful to examine the 
response ratio ),(),(),( ����� TTT ygym�

1�

�  for each ground motion. It should be apparent that 
when ),( �� T  the ground motion model predicts displacement demands that are equal to 
those caused by the recorded ground motion. The sample mean and mean-plus-or-minus-one-
standard-deviation curves for ),( �� T  are plotted in Fig. 10, in which it can be seen that the 
sample mean of the response ratio, ),( �� T , is close to unity for some intervals of T  that 
appear to depend mildly on the ductility ratio. Assuming that 

pT/
1.1),(9. �� �0 � T

1/5. �� pTT

 is sufficiently 
accurate for engineering calculations, the ranges of T  for which the proposed ground motion 
model is applicable vary from 0  for  to 0  for . 
Considering all four ductility ratios, we conclude that the proposed ground motion model 
predicts displacement demands that, on average, are within 10% of those caused by the recorded 
ground motions for . For systems that have periods that lie outside of this 
range, the proposed ground motion model tends to underestimate the displacement demands.  
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We note that the variability in ),( �� T , which is indicated by the distance between the 

mean-plus-or-minus-one-standard-deviation curves plotted in Fig. 10, can be partially attributed 
to model uncertainty, which arises when an imperfect mathematical model (Eq. 1 in this case) is 
used to a represent complex phenomenon. To see this, consider the ideal situation in which the 
proposed ground motion model always predicts the displacement demands exactly. For this case, 
in which all model uncertainty has been eliminated, 1),( ��� T  for all records and the mean-
plus-or-minus-one-standard-deviation curves plotted in Fig. 10 would lie on the mean curve. Of 
course, record-to-record variability would still exist, but it would only be apparent in plots of 
absolute quantities, such as the constant ductility response spectra plotted in Fig. 9. The same 
would be true if the model consistently under- or overestimates the maximum displacement, i.e., 
if ��� �),(T , where 1��  but is the same for all ground motions.  Thus, the variability in 

),( �� T  apparent in Fig. 10 reveals that for some ground motions the proposed model 
overestimates the displacement demands, while for others, it underestimates the displacement 
demands. Contrary to what might be concluded from Fig. 9 alone, the proposed ground motion 
model does not always underestimate the displacement demands imposed on a structure. 



Applications 
 

In light of the results presented in Figs. 9 and 10, it appears that the proposed ground 
motion model can represent fault-normal near-fault ground motions with sufficient accuracy for 
structural analyses, provided the initial natural period of the structure is comparable to the period 
of the velocity pulse. The advantages of using the proposed ground motion model in lieu of 
recorded ground motions lie in the fact that the model is defined in terms of only four parameters 
( t  is only of interest when fitting the model to a recorded ground velocity) that can be 
determined from attenuation relationships or simulated from probability distributions that can be 
readily derived from a constantly-growing database of recorded ground motions. As a result, 
engineers can use the model to consider realizations of near-fault ground motions beyond those 
available in the historical record.  

0

 
One application of the proposed model is to simulate near-fault ground motions for a 

specified building site. Given the seismic environment of the site, e.g., the distance to active 
faults and the anticipated magnitudes of earthquakes on those faults, one can use attenuation 
relationships to estimate sets of parameters to be used in ground motion model. In this way, an 
ensemble of simulated ground motions can be generated and used, for example, to estimate upper 
and lower bounds for the response quantities under consideration. Alternatively, the model 
parameters may be perturbed in a systematic manner to examine the sensitivity of the structural 
response to the amplitude, duration and shape of the velocity pulse.  

 
The proposed ground motion model is also well suited for structural-reliability-based 

analyses, in which the performance of a structure is quantified in terms of the probability that it 
fails to satisfy prescribed limit states. In earthquake engineering applications of structural 
reliability, it is critical that the intensity and variability of the ground motions are accurately 
represented. One way of representing the ground motions is with a stochastic model. 
Unfortunately, stochastic models of near-fault ground motions can be complex and cumbersome 
to implement due to the strong nonstationary features of such motions. However, the need for a 
stochastic representation of near-fault ground motions in structural reliability analyses can be 
avoided by treating the parameters of the proposed ground motion model as random variables. 
By replacing the stochastic model with a probabilistic model (defined by the joint probability 
distribution of the four model parameters/random variables), the size and complexity of the 
structural reliability problem to be solved is reduced while maintaining a sufficiently accurate 
representation of the intensity and variability of the ground motions. 

 
Summary 

 
A mathematical model for fault-normal, near-fault ground motions, which can be used in 

lieu of recorded ground motions, is proposed. The ground motion model is defined by five 
parameters that, for a specified near-fault record, can be determined by a nonlinear regression 
analysis. The suitability of the proposed ground motion model for structural analyses is evaluated 
by comparing the response of linear and nonlinear SDOF systems that are subjected to an 
ensemble of recorded near-fault ground motions and their idealizations, which are obtained by 
fitting the proposed model to the recorded motions. For ductility ratios , the proposed 
ground motion model predicts displacement demands in SDOF systems that, on average, are 

8��



within 10% of those caused by the recorded ground motions for systems that have an initial 
period, T , that lies in the range 0 , where T  is the period of the velocity pulse 
present in the record. For systems that have periods that lie outside of this range, the proposed 
ground motion model tends to underestimate the displacement demands, due to its inability to 
reproduce the frequency content of the recorded ground motions beyond that associated with the 
velocity pulse.  
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